Help

This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).

Content

res <- read.csv("results_2017-01-18.csv")
cor.test(res$CONJI, res$X_LEN)

    Pearson's product-moment correlation

data:  res$CONJI and res$X_LEN
t = -2.6322, df = 3426, p-value = 0.008522
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.07828427 -0.01146387
sample estimates:
        cor 
-0.04492431 
cor.test(res$PREI, res$X_LEN)

    Pearson's product-moment correlation

data:  res$PREI and res$X_LEN
t = 7.8302, df = 3426, p-value = 6.446e-15
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.09955887 0.16533838
sample estimates:
      cor 
0.1325946 
cor.test(res$PPI, res$X_LEN)

    Pearson's product-moment correlation

data:  res$PPI and res$X_LEN
t = -5.4536, df = 3426, p-value = 5.285e-08
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.12585824 -0.05947848
sample estimates:
        cor 
-0.09277144 
LS0tCnRpdGxlOiAiQ29ycmVsYXRpb24gYmV0d2VlbiB0eXBlLWJhc2VkIGZlYXR1cmVzIGFuZCB0ZXh0IGxlbmd0aCIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKIyBIZWxwCgpUaGlzIGlzIGFuIFtSIE1hcmtkb3duXShodHRwOi8vcm1hcmtkb3duLnJzdHVkaW8uY29tKSBOb3RlYm9vay4gV2hlbiB5b3UgZXhlY3V0ZSBjb2RlIHdpdGhpbiB0aGUgbm90ZWJvb2ssIHRoZSByZXN1bHRzIGFwcGVhciBiZW5lYXRoIHRoZSBjb2RlLiAKClRyeSBleGVjdXRpbmcgdGhpcyBjaHVuayBieSBjbGlja2luZyB0aGUgKlJ1biogYnV0dG9uIHdpdGhpbiB0aGUgY2h1bmsgb3IgYnkgcGxhY2luZyB5b3VyIGN1cnNvciBpbnNpZGUgaXQgYW5kIHByZXNzaW5nICpDdHJsK1NoaWZ0K0VudGVyKi4gCgpBZGQgYSBuZXcgY2h1bmsgYnkgY2xpY2tpbmcgdGhlICpJbnNlcnQgQ2h1bmsqIGJ1dHRvbiBvbiB0aGUgdG9vbGJhciBvciBieSBwcmVzc2luZyAqQ3RybCtBbHQrSSouCgpXaGVuIHlvdSBzYXZlIHRoZSBub3RlYm9vaywgYW4gSFRNTCBmaWxlIGNvbnRhaW5pbmcgdGhlIGNvZGUgYW5kIG91dHB1dCB3aWxsIGJlIHNhdmVkIGFsb25nc2lkZSBpdCAoY2xpY2sgdGhlICpQcmV2aWV3KiBidXR0b24gb3IgcHJlc3MgKkN0cmwrU2hpZnQrSyogdG8gcHJldmlldyB0aGUgSFRNTCBmaWxlKS4KCiMgQ29udGVudAoKYGBge3J9CnJlcyA8LSByZWFkLmNzdigicmVzdWx0c18yMDE3LTAxLTE4LmNzdiIpCmBgYAoKYGBge3J9CmNvci50ZXN0KHJlcyRDT05KSSwgcmVzJFhfTEVOKQpgYGAKCmBgYHtyfQpjb3IudGVzdChyZXMkUFJFSSwgcmVzJFhfTEVOKQpgYGAKCmBgYHtyfQpjb3IudGVzdChyZXMkUFBJLCByZXMkWF9MRU4pCmBgYAoK