Bibliography:
- Bečka, J.V. (1972). The lexical composition of specialized texts and its quantitative aspect. Prague Studies in Mathematical Linguistics 4, 47–64.
- Čermák, F. (2010). Lexikon a sémantika. Praha: NLN.
- Křen, M. et al. (2010). SYN2010: žánrově vyvážený korpus psané češtiny. Prague: Institute of the Czech National Corpus, Charles University. Available: http://www.korpus.cz
- Chung, T. M. (2003). A corpus comparison approach for terminology extraction. Terminology 9(2), 221–246.
- Cvrček, V. (2013), Kvantitativní analýza kontextu. Praha: NLN/ÚČNK.
- Frantzi, K.T. and Ananiadou, S. (1999). The C/NC value domain independent method for multi-word term extraction. Journal of Natural Language Processing 3(2), 115–127.
- Gamper, H. and Stock, O. (1998/1999). Corpus-based terminology. Terminology 5(2), 147–159.
- Hall, Mark et al. (2009). The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1).
- Heid, U. (1998/1999). A linguistic bootstrapping approach to the extraction of term candidates from German text. Terminology 5(2), 161–181.
- Kageura, K. and Umino, B. (1996). Methods of automatic term recognition: A review. Terminology 3(2), 259–289.
- Kit, C. and Liu, X. (2008). Measuring mono-word termhood by rank difference via corpus comparison. Terminology 14(2), 204–229.
- Kováříková, D. (2017). Kvantitativní charakteristiky termínů. Praha: NLN/ÚČNK.
- L’Homme, M., Heid, U. and Sager, J.C. (2003). Terminology during the past decade (1994-2004): An editorial statement. Terminology 9(2),151–161.
- Lauriston, A. (1995). Criteria for measuring term recognition. EACL ’95 Proceedings of the seventh conference on European chapter of the Association for Computational Linguistics. San Francisco: Morgan Kaufmann Publishers.
- Lossio-Ventura, J. A. et al. (2014). Biomedical Terminology Extraction: A new combination of Statistical and Web Mining Approaches. JADT'2014: Journées internationales d'Analyse statistique des Données Textuelle, 421–432.
- Manning, C. D and H. Schütze (2000). Foundations of Statistical Natural Language Processing. Cambridge/London: The MIT Press.
- Nazar, R. (2016). Distributional analysis applied to terminology extraction. Terminology. International Journal of Theoretical and Applied Issues in Specialized Communication 22(2), 141–170.
- Savický, P. and J. Hlaváčová (2003). Measures of word commonness. Journal of Quantitative Linguistics 9(3), 215–231.
- Šrajerová, D., Kovářík, O. and Cvrček, V. (2009). Automatic term recognition based on data-mining techniques. Proceedings of Computer Science and Information Engineering – CSIE. Los Angeles.
- Ville-Ometz, F., Royauté, J. and Zasadzinski, A. (2007). Enhancing in automatic recognition and extraction of term variants with linguistic features. Terminology 13(1), 35–59.
- Wermter, J. and Hahn, U. (2005). Finding new terminology in very large corpora. Proceedings of the 3rd International Conference on Knowledge Capture (KCAP 2005).
- Witten, I.H. and Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques. Amsterdam: Elsevier.
- Yang, H. (1986). A new technique for identifying scientific/technical terms and describing science texts. Literary and Linguistic Computing 1(2), 93–103.